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Abstract

We present a multi-label multiple kernel learning (MKL) fioulation in which
the data are embedded into a low-dimensional space diréstdde instance-
label correlations encoded into a hypergraph. We formutageproblem in the
kernel-induced feature space and propose to learn the lkaateix as a linear
combination of a given collection of kernel matrices in th&IMramework. The
proposed learning formulation leads to a non-smooth mir-prablem, which
can be cast into a semi-infinite linear program (SILP). Wéhferr propose an ap-
proximate formulation with a guaranteed error bound whiololves an uncon-
strained convex optimization problem. In addition, we shbwat the objective
function of the approximate formulation is differentialéh Lipschitz continu-
ous gradient, and hence existing methods can be employedtoute the optimal
solution efficiently. We apply the proposed formulationtte eutomated annota-
tion of Drosophilagene expression pattern images, and promising results have
been reported in comparison with representative algosthm

1 Introduction

Spectral graph-theoretic methods have been used widehsinpervised and semi-supervised learn-
ing recently. In this paradigm, a weighted graph is constadifor the data set, where the nodes
represent the data points and the edge weights charadiegizelationships between vertices. The
structural and spectral properties of graph can then beogggIto perform the learning task. One
fundamental limitation of using traditional graphs forgthéask is that they can only represent pair-
wise relationships between data points, and hence higldermformation cannot be captured [1].
Hypergraphs [1, 2] generalize traditional graphs by altaysdges, called hyperedges, to connect
more than two vertices, thereby being able to capture tlatioakhips among multiple vertices.

In this paper, we propose to use a hypergraph to capture thelation information for multi-label
learning [3]. In particular, we propose to construct a hgpgph for multi-label data in which
all data points annotated with a common label are includeal iyperedge, thereby capturing the
similarity among data points with a common label. By exphgjtthe spectral properties of the
constructed hypergraph, we propose to embed the multi-tidte into a lower-dimensional space
in which data points with a common label tend to be close tb etteer. We formulate the multi-label
learning problem in the kernel-induced feature space, hog that the well-known kernel canonical
correlation analysis (KCCA) [4] is a special case of the jpsgd framework. As the kernel plays an
essential role in the formulation, we propose to learn thraddematrix as a linear combination of a
given collection of kernel matrices in the multiple kerresitning (MKL) framework. The resulting



formulation involves a non-smooth min-max problem, and tvavsthat it can be cast into a semi-
infinite linear program (SILP). To further improve the effiocy and reduce the non-smoothness
effect of the SILP formulation, we propose an approximatenidation by introducing a smoothing
term into the original problem. The resulting formulatisruinconstrained and convex. In addition,
the objective function of the approximate formulation i®wh to be differentiable with Lipschitz
continuous gradient. We can thus employ the Nesterov'soath 6], which solves smooth convex
problems with the optimal convergence rate, to computedhgisn efficiently.

We apply the proposed formulation to the automated anmotaif Drosophilagene expression
pattern images, which document the spatial and temporahrdias of gene expression during
Drosophilaembryogenesis [7]. Comparative analysis of such imagegotantially reveal new
genetic interactions and yield insights into the complegutatory networks governing embryonic
development. To facilitate pattern comparison and seagclgiroups of images are annotated with a
variable number of labels by human curators in the BerkBlmsophilaGenome Project (BDGP)
high-throughput study [7]. However, the number of avaiaibhages produced by high-throughput
in situ hybridization is now rapidly increasing. It is thereforengting to design computational
methods to automate this task [8]. Since the labels are ia$sdavith groups of a variable number
of images, we propose to extract invariant features frorh @aage and construct kernels between
groups of images by employing the vocabulary-guided pydamtch algorithm [9]. By applying
various local descriptors, we obtain multiple kernel ntatsi and the proposed multi-label MKL
formulation is applied to obtain an optimal kernel matrix fbe low-dimensional embedding. Ex-
perimental results demonstrate the effectiveness of theekenatrices obtained by the proposed
formulation. Moreover, the approximate formulation iswhdo yield similar results to the original
formulation, while it is much more efficient.

2 Multi-label Learning with Hypergraph

An essential issue in learning from multi-label data is hovwexploit the correlation information
among labels. We propose to capture such information thraugypergraph as described below.

2.1 Hypergraph Spectral Learning

Hypergraphs generalize traditional graphs by allowingdmgdges to connect more than two ver-
tices, thus capturing the joint relationships among midtiertices. We propose to construct a
hypergraph for multi-label data in which each data poinefgresented as a vertex. To document the
joint similarity among data points annotated with a comnadrel, we propose to construct a hyper-
edge for each label and include all data points annotatddaxitommon label into one hyperedge.
Following the spectral graph embedding theory [10], we pegpto compute the low-dimensional
embedding through a linear transformatidhby solving the following optimization problem:

min - tr (WTp(X)Lo(X)TW) 1)

subjectto W7 ($(X)p(X)" + AI) W =1,

where¢(X) = [¢(z1), -+, ¢(x,)] is the data matrix consisting of data points in the feature
spaceg is the feature mappind; is the normalized Laplacian matrix derived from the hypepdy,
and)\ > 0 is the regularization parameter. In this formulation, thsténce-label correlations are
encoded intaC through the hypergraph, and data points sharing a commentiaid to be close to
each other in the embedded space.

It follows from therepresenter theorefi1] thatWW = ¢(X)B for some matrixB € R"** where
k is the number of labels. By noting thdt= I — C for some matrixC, the problem in Eq. (1) can
be reformulated as

max -t (BT (KCK)B) (2)

subjectto BT (K? + AK)B =1,
whereK = ¢(X)T¢(X) is the kernel matrix. Kernel canonical correlation anay&CCA) [4] is
a widely-used method for dimensionality reduction. It cashown [4] that KCCA is obtained by

substitutingC = YT(YYT)~1Y in Eq. (2) whereY” € R**" is the label indicator matrix. Thus,
KCCA is a special case of the proposed formulation.



2.2 A Semi-infinite Linear Program Formulation

It follows from the theory of kernel methods [11] that therkelrK in Eq. (2) uniquely determines the
feature mapping. Thus, kernel selection (learning) is one of the centraléssn kernel methods.
Following the MKL framework [12], we propose to learn an omdl kernel matrix by integrating
multiple candidate kernel matrices, that is,

p
KeK=(K=> 0;K;[fTe=1,6>0,, 3)
j=1

where{K; }7"_1 are thep candidate kernel matricegf; },_, are the weights for the linear combi-
nation, andis the vector of all ones of lengih We have assumed in Eq. (3) that all the candidate
kernel matrices are normalized to have a unit trace valubasdtbeen shown [8] that the optimal
weights maximizing the objective function in Eq. (2) can Iained by solving a semi-infinite lin-
ear program (SILP) [13] in which a linear objective is optzed subject to an infinite number of
linear constraints, as summarized in the following theorem

Theorem 2.1. Given a set op kernel matriceg K; }”_1, the optimal kernel matrix ifC that maxi-
mizes the objective function in Eq. (2) can be obtained byirspthe following SILP problem:

max y (4)
0,y
p
subjectto  6>0, 0Te=1, Y 0;5;(2) >, forall Z € R™**, (5)

J=1

whereS;(Z), forj =1,--- ,p, is defined as

k
5,2) =3 (o7 + g5 Ky — T ©

i=1
Z = [z, ,2), H is obtained fronC such that/ H = C,andH = [hq,-- - , hy].
Note that the matrixC' is symmetric and positive semidefinite. Moreover, for theonsidered in

this paper, we have ratk) = k. Hence,H € R"** is always well-defined. The SILP formulation
in Theorem 2.1 can be solved by the column generation teabrag in [14].

3 The Approximate Formulation

The multi-label kernel learning formulation proposed inedhem 2.1 involves optimizing a linear
objective subject to an infinite number of constraints. Téleimn generation technique used to solve
this problem adds constraints to the problem successiveilall the constraints are satisfied. Since
the convergence rate of this algorithm is slow, the probleivwesl at each iteration may involve a
large number of constraints, and hence is computationgfigmsive. In this section, we propose an
approximate formulation by introducing a smoothing ternoithe original problem. This results in
an unconstrained and smooth convex problem. We proposepitgexisting methods to solve the
smooth convex optimization problem efficiently in the neattson.

By rewriting the formulation in Theorem 2.1 as
p
i 0;5;(Z
e:eTgljl)fezomij; 595

and exchanging the minimization and maximization, the Stirfiulation can be expressed as
min f(Z) (7)

wheref(Z) is defined as

f(Z) 0: GTe 1, 9>029 S (8)



The maximization problem in Eq. (8) with respecttteads to a non-smooth objective function for
f(Z). To reduce this effect, we introduce a smoothing term andifptite objective tof,(Z) as

p p
fuZ) = max {E 0;5;(Z) =y 0; log‘%}, 9)
remLEEY =1 =1

wherey is a positive constant controlling the approximation. Tokofving lemma shows that the
problem in Eqg. (9) can be solved analytically:

Lemma 3.1. The optimization problem in Eq. (9) can be solved analylycaind the optimal value

can be expressed as
P
1
fu(Z) = plog (Z exp (;sj(2)>) : (10)
j=1
Proof. Define the Lagrangian function for the optimization problerkq. (9) as

p p p p
L=> 0;S;(Z)—pY 0;logb;+> a;6; + (Z9j—1> B, (11)
i=1 i=1 i=1 i=1

Where{ozj}fz1 andg are Lagrangian dual variables. Taking the derivative ofLthgrangian func-
tion with respect t@; and setting it to zero, we obtain that = exp (% (S;j(Z)+ o+ 8- H)) .
It follows from the complementarity condition that6; = 0 for j = 1,--- ,p. Sinced; # 0, we
havea; = 0forj=1,---,p. By removing{«; }p 1 and substituting, |nto the obJect|ve function
in Eq. (9), we obtain thaf,,(Z) = p — . Slnceu B8 =25;(Z)— nlogb;, we have

0; = exp ((S5(2) = Ful2) /). (12)
Following1 =37%_, 0; = >>0_, exp ((S;(Z) — fu(Z))/11) , we obtain Eq. (10). O

The above discussion shows that we can approximate theakigon-smooth constrained min-max
problem in Eq. (7) by the following smooth unconstrainedimization problem:

min f, (). (13)

where f,(Z) is defined in Eqg. (10). We show in the following two lemmas ttieet approximate
formulation in Eq. (13) is convex and has a guaranteed appition bound controlled by.

Lemma 3.2. The problem in Eq. (13) is a convex optimization problem.

Proof. The optimization problem in Eq. (13) can be expressed etpntlg as

P k
- }Ignir%{ ) 1 log (Z exp (Uj +v; — Z Z?M)) (14)
UG S j=151Y5 S j=1 i=1

j=1
subject to > = Zz Zi, v > 4/\22 Kz, j=1,-

Since the log-exponential-sum functlon is a convex fumcéind the two constraints are second-order
cone constraints, the problemin Eqg. (13) is a convex opétion problem. O

Lemma 3.3. Let f(Z) and f,,(Z) be defined as above. Then we hgy&Z) > f(Z) and|f,.(Z) —
F(Z)| < plogp.

Proof. The term—>""_, 0, log 6; defines the entropy dft; }/_, when it is considered as a proba-

bility distribution, since# > 0 andf”'e = 1. Hence, this term is non-negative afd 2) > f(Z). It
is known from the property of entropy thatz 0; log 0; is maximized with a umforn{& }7 1

i.e.,0; = %forj =1,---,p. Thus, we have- ijl 0;logf; < logpand|f.(Z2) — f(Z)| =
—pY ", 05logh; < pulogp. This completes the proof of the lemma. O



4 Solving the Approximate Formulation Using the Nesterov'sMethod

The Nesterov’s method (known as “the optimal method” in [§]&n algorithm for solving smooth
convex problems with the optimal rate of convergence. Is théthod, the objective function needs
to be differentiable with Lipschitz continuous gradiem. drder to apply this method to solve the
proposed approximate formulation, we first compute thedhfig constant for the gradient of func-
tion f,(Z), as summarized in the following lemma:

Lemma 4.1. Let f,(Z) be defined as in Eq. (10). Then the Lipschitz constaot the gradient of
fu(Z) can be bounded from above as
L <Ly, (15)
whereL,, is defined as
_ 1 1 1 T _ AT
Ly =5+ g3 max Amax(K;) + Y (27 2) max Amax(Ki - K;)(K; - K;)7), (16)

and)\max(-) denotes the maximum eigenvalue. Moreover, the distancetfre origin to the optimal
set ofZ can be bounded as(t£” Z) < R’ whereR?, is defined as

R? i(m ]||2+\/4ulogp+tr (ch [u%zg] cj>>2, (17)

=1

C; =2 (I +1K;)™" H and|[C,]; denotes théth column ofC);.

Proof. To compute the Lipschitz constant for the gradienfpfZ), we first compute the first and
second order derivatives as follows:

vi2) = Sa (P52 + AU - vea), 8)
V) = 5T+ E D))

_|_

1 & vedK,Z) vedK,Z)\ (vedK,Z) vedK,;Z)\"
o O gy (WA AR (Al ABD) o)

where ve¢) converts a matrix into a vectoRy (K;) € Rk x(xk) js a block diagonal matrix
with the kth diagonal block ad;, andg; = exp(S;(Z)/n)/ >_F_, exp(Si(Z)/p). Then we have

1 1 1
<S4 — AN T T <1
L= 5+ gy max Amax(K;) + S0  max (27 (K — Kj)(Ki — K;)" 2) < Ly

whereL,, is defined in Eq. (16).

We next derive the upper bound fot&” 7). To this end, we first rewrit®; (2) as

1 1 1 1
5(2) = tr ((Z -Cy)" [I + XKJ»] (Z - Cj)) i (Cf [I + XKJ»] q) :
Sincemin f,,(Z) < f.(0) = ulogp, and f,(Z) > S;(Z), we haveS;(Z) < plogp for j =
1,---,p. Itfollows thatitr ((Z — C;)"(Z — C;)) < plogp+ 5tr (C] [I + K] C;) . By using
this inequality, it can be verified tha{#” Z) < Ri whereRﬁ is defined in Eq. (17). O

The Nesterov’s method for solving the proposed approxirf@ataulation is presented in Table 1.
After the optimalZ is obtained from the Nesterov’'s method, the optlpf@I}Z"_1 can be computed
from Eq. (12). It follows from the convergence proof in [Sjathafter NV |terat|ons as long as
Ju(XH) < £ (X% fori=1,---, N, we have

4L, R2

f#(ZN+1) fﬂ( ) (N+1)27

(20)



Table 1: The Nesterov’s method for solving the proposediraliel MKL formulation.

e Initialize X = 7! = Q° = 0 R™**, ¢y = 1, Ly = § + 55 maxi<;j<p Amax(K;), and
= % whereN is the predefined number of iterations
e fori=1,---,Ndo
o SetX'=7"— ﬁ(Zl + Q)
e Computef,(X*) andv f,(X?)
e SetlL = L;
o while f,(X* — v f,(X")/L) > fu(X") = 5ptr((V £ (X)) TV f(X7)) do
o [ =Lx2
e end while
e Setl; =L
o Setzitt = X1 — Lyf,(X7), Q'=Q" !+ Ly f, (XY

o Sett = & (1+/1+42,)

e end for

whereZ* = argminy f,,(Z). Furthermore, sincg, (ZN¥+1) > f(ZVN*TY) andf.(Z*) < f(Z*) +
1 log p, we have
AL, R?
ZNtY — f(Z7) < pl K 21
f( ) — [( )_uogp+(N+1)2 (21)
By settingu = O(1/N), we have thal,, x O(1/u) « O(N). Hence, the convergence rate of the
Nesterov’s method is on the order@f1/N). This is significantly better than the convergence rates

of O(1/N'/3) andO(1/N'/2) for the SILP and the gradient descent method, respectively.

5 Experiments

In this section, we evaluate the proposed formulation oathemated annotation of gene expression
pattern images. The performance of the approximate fotioualés also validated.

Experimental Setup The experiments use a collection of gene expression patteges retrieved
from the FlyExpress databage ¢ p: / / ww. f | yexpr ess. net ). We apply nine local descrip-
tors (SIFT, shape context, PCA-SIFT, spin image, steeffdtdes, differential invariants, complex
filters, moment invariants, and cross correlation) on raggtids of16 and32 pixels in radius and
spacing on each image. These local descriptors are commeatyin computer vision problems
[15]. We also apply Gabor filters with different wavelet ssahnd filter orientations on each image
to obtain global features 884 and2592 dimensions. Moreover, we sample the pixel values of each
image to obtain features d0240, 2560, and640 dimensions. After generating the features, we
apply the vocabulary-guided pyramid match algorithm [9tbmstruct kernels between the image
sets. A total oR23 kernel matrices grid sizex 9 local descriptors+ 2 Gabor+ 3 pixel) are con-
structed. Then the proposed MKL formulation is employedhlitam the optimal integrated kernel
matrix based on which the low-dimensional embedding is adeth We use the expansion-based
approachgtar andclique) to construct the hypergraph Laplacian, since it has beewrsljl] that

the Laplacians constructed in this way are similar to thdsained directly from a hypergraph. The
performance of kernel matrices (either single or integhais evaluated by applying the support
vector machine (SVM) for each term using the one-agairsttseheme. The F1 score is used as
the performance measure, and bothcroaveraged anchicro-averaged F1 scores across labels are
reported. In each case, the entire data set is randomlyipaeti into training and test sets with a
ratio of 1:1. This process is repeated ten times, and thegedrperformance is reported.

Performance EvaluationIt can be observed from Tables 2 and 3 that in terms of both oreatd
micro F1 scores, the kernels integrated by either star quelexpansions achieve the highest per-
formance on almost all of the data sets. In particular, thegirated kernels outperform the best
individual kernel significantly on all data sets. This shahet the proposed formulation is effective



Table 2: Performance of integrated kernels and the bestithdil kernel (denoted as BIK) in terms
of macroF1 score. The number of terms used are 20, 30, and 40, and thigenwf image sets
used are 1000, 1500, and 2000. “SILP”, “APP”, “SVM1”, and ‘{témm” denote the performance
of kernels combined with the SILP formulation, the approaieformulation, the 1-norm SVM for-
mulation proposed in [12] applied for each label separatelgl the case where all kernels are given
the same weight, respectively. The subscripts “star” atidue” denote the way that Laplacian is
constructed, and “KCCA’ denotes the case where Y (Y Y1)~ 1Y.

# of labels 20 30 40

# of sets 1000 | 1500 | 2000 | 1000 | 1500 [ 2000 | 1000 [ 1500 | 2000

SILPstar 0.4396| 0.4903| 0.4575| 0.3852] 0.4437| 0.4162| 0.3768| 0.4019| 0.3927
SILPgjigue | 0.4536| 0.5125| 0.4926| 0.4065| 0.4747| 0.4563| 0.4145| 0.4346| 0.4283
SILPkcca | 0.3987| 0.4635| 0.4477| 0.3497| 0.4240| 0.4063| 0.3538| 0.3872| 0.3759

APPstar 0.4404| 0.4930| 0.4703| 0.3896| 0.4494| 0.4267| 0.3900| 0.4100| 0.3983
APPgique | 0.4510| 0.5125| 0.4917| 0.4060| 0.4741| 0.4563| 0.4180| 0.4338| 0.4281
APP«cca | 0.4029| 0.4805| 0.4586| 0.3571| 0.4313| 0.4146| 0.3642 0.3914| 0.3841
SVM1 0.3780| 0.4640| 0.4356| 0.3523] 0.4352| 0.4200{ 0.3741| 0.4048| 0.3955
Uniform 0.3727| 0.4703| 0.4480| 0.3513| 0.4410| 0.4191 0.3719  0.4111| 0.3986
BIK 0.4241] 0.4515| 0.4344| 0.3782| 0.4312| 0.3996| 0.3914| 0.3954| 0.3827

Table 3: Performance in terms wiicro F1 score. See the caption of Table 2 for explanations.
# of labels 20 30 40
# of sets 1000 | 1500 | 2000 | 1000 | 1500 [ 2000 | 1000 [ 1500 | 2000

SILPstar 0.4861| 0.5199| 0.4847| 0.4472| 0.4837| 0.4473| 0.4277| 0.4470| 0.4305
SILPgique | 0.5039] 0.5422| 0.5247| 0.4682| 0.5127| 0.4894| 0.4610| 0.4796| 0.4660
SILPkcca | 0.4581) 0.4994| 0.4887| 0.4209| 0.4737| 0.4532| 0.4095| 0.4420| 0.4271

APPstar 0.4852| 0.5211| 0.4973| 0.4484| 0.4875| 0.4582| 0.4355| 0.4541| 0.4346
APPgique | 0.5013| 0.5421| 0.5239| 0.4673| 0.5124| 0.4894| 0.4633| 0.4793| 0.4658
APPcca | 0.4612] 0.5174] 0.5018| 0.4299| 0.4828| 0.4605| 0.4194| 0.4488| 0.4350

SVM1 0.4361| 0.5024| 0.4844| 0.4239| 0.4844| 0.4632| 0.3947| 0.4234| 0.4188

Uniform 0.4390] 0.5096| 0.4975| 0.4242| 0.4939| 0.4683| 0.3999| 0.4358| 0.4226
BIK 0.4614| 0.4735| 0.4562| 0.4189| 0.4484| 0.4178| 0.3869| 0.3905| 0.3781

in combining multiple kernels and exploiting the completagy information contained in different
kernels constructed from various features. Moreover, thpgsed formulation based on a hyper-
graph outperforms the classical KCCA consistently.

SILP versus the Approximate Formulation In terms of classification performance, we can observe
from Tables 2 and 3 that the SILP and the approximate forriamgtare similar. More precisely,
the approximate formulations perform slightly better tt&hP in almost all cases. This may be
due to the smoothness nature of the formulations and thdisitpf the computational procedure
employed in the Nesterov’s method so that it is less pronemoearical problems. Figure 1 compares
the computation time and the kernel weights of SihRand APR,. It can be observed that in
general the approximate formulation is significantly fastein SILP, especially when the number
of labels and the number of image sets are large, while théyybelds very similar kernel weights.

6 Conclusions and Future Work

We present a multi-label learning formulation that incogies instance-label correlations by a hy-
pergraph. We formulate the problem in the kernel-induceduie space and propose to learn the
kernel matrix in the MKL framework. The resulting formulai leads to a non-smooth min-max
problem, and it can be cast as an SILP. We propose an appriexforanulation by introducing a
smoothing term and show that the resulting formulation israonstrained convex problem that can
be solved by the Nesterov’'s method. We demonstrate thetigfaess and efficiency of the method
on the task of automated annotation of gene expressiorrpatiages.
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Figure 1: Comparison of computation time and kernel weiddtsSIL Py, and APR,. The left
panel plots the computation time of two formulations on oa#ipion of the data set as the number
of labels and image sets increase gradually, and the rigitet pdots the weights assigned to each of
the23 kernels by SILR, and APR, 0N a data set of0 labels and 000 image sets.

The experiments in this paper focus on the annotation of gepeession pattern images. The
proposed formulation can also be applied to the task of pialbbject recognition in computer
vision. We plan to pursue other applications in the futurgpdfimental results indicate that the
best individual kernel may not lead to a large weight by tteppsed MKL formulation. We plan to
perform a detailed analysis of the weights in the future.
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